LIFE BEYOND II: The Museum of Alien Life (4K)

Video Statistics and Information

Video
Captions Word Cloud
Reddit Comments

I can only explain this video as an EDM remix of a Carl Sagan Documentary. It's a good watch and has some good visuals...but the part about plasma crystals....bruh I need to inspect the source code.

👍︎︎ 38 👤︎︎ u/hel112570 📅︎︎ Oct 10 2020 🗫︎ replies

This made me so sad that we are not out there now discovering new worlds.

👍︎︎ 16 👤︎︎ u/MediocrePancakes 📅︎︎ Oct 10 2020 🗫︎ replies

I thought this was a game at first.

👍︎︎ 8 👤︎︎ u/TheValkian 📅︎︎ Oct 10 2020 🗫︎ replies

I'm 20 minutes in and I'm absolutely blown. The visuals and narration are so good ~

👍︎︎ 9 👤︎︎ u/Lightupthereef 📅︎︎ Oct 10 2020 🗫︎ replies

Sweeeet

👍︎︎ 4 👤︎︎ u/justonemorethang 📅︎︎ Oct 10 2020 🗫︎ replies

When they got to artifical life, I got pretty excited since this is a taking point i have with friends all the time.

👍︎︎ 4 👤︎︎ u/eagleoid 📅︎︎ Oct 10 2020 🗫︎ replies

Underated chanel

👍︎︎ 3 👤︎︎ u/Anorangutan 📅︎︎ Oct 10 2020 🗫︎ replies

Borg spotted!

👍︎︎ 6 👤︎︎ u/briennelise 📅︎︎ Oct 10 2020 🗫︎ replies

Interesting, but I tired real fast of faux-Sagan narration and space documentary clichés like "cosmic dust floating on the atom clouds of the universe".

👍︎︎ 8 👤︎︎ u/HakanAzeri 📅︎︎ Oct 10 2020 🗫︎ replies
Captions
Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ<b> Protocol Labs</b> Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ<b> Protocol Labs</b> Follow your curiosity. Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ<b> Protocol Labs</b> Follow your curiosity. Lead humanity forward. <b>Protocol Labs</b> Follow your curiosity. Lead humanity forward. Follow your curiosity. Lead humanity forward. <b>In all the universe,</b> <b>In all the universe, there stands only one known tree of life.</b> <b>Does it stand alone?</b> <b>Does it stand alone? Or is it part of a vast cosmic wilderness?</b> <b>Imagine a museum containing every type of life in the universe.</b> <b>What strange things would such a museum hold?</b> <b>What is possible under the laws of nature?</b> LIFE LIFE BEYOND <b>CHAPTER II</b> <b>CHAPTER II</b><i> The Museum Of Alien Life</i> To have any hope- of finding alien life, we have to know what to look for. But where do we begin? How do we narrow down... a seemingly infinite set- of possibilities? There's one thing we know for sure... nature will have to play- by her own rules. No matter how strange- alien life might be... is going to be limited- by the same physical, and chemical laws that we are... 6_ 6 C_ 6 CO_ 6 CO₂ 6 CO₂ + 6 CO₂ + 6 6 CO₂ + 6 H_ 6 CO₂ + 6 H₂_ 6 CO₂ + 6 H₂O_ 6 CO₂ + 6 H₂O + 6 CO₂ + 6 H₂O + L 6 CO₂ + 6 H₂O + Li 6 CO₂ + 6 H₂O + Lig_ 6 CO₂ + 6 H₂O + Ligh_ 6 CO₂ + 6 H₂O + Light_ 6 CO₂ + 6 H₂O + Light → 6 CO₂ + 6 H₂O + Light → C 6 CO₂ + 6 H₂O + Light → C₆ 6 CO₂ + 6 H₂O + Light → C₆H_ 6 CO₂ + 6 H₂O + Light → C₆H₁_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 O_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 O₂ On top of this, 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 O₂ On top of this, each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ →_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2 each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅O_ each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH + each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2 ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2C_ will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO_ will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ +_ will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + E will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + En will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Ene will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Ener_ will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energ_ will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy_ will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy what kinds of life forms- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy can evolve there. ⁴⁵⁸ <i>ɴɪʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy can evolve there. ⁴⁰⁵⁰ <i>ɴɪʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy can evolve there. Despite these natural boundaries, the possibilities are staggering to imagine. Trillions of planets... each a unique cauldron of chemicals, undergoing their own complex evolution. To guide our thinking, this museum of alien life- will be divided into two exhibits... Life as we know it, <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ Life as we know it, <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ home to beings- <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ with bio-chemistries like ours. <b>EXHIBIT II</b> Life As We Know Don't It ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ <b>EXHIBIT II</b> Life As We Know Don't It ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ And life as we don't know it, <b>EXHIBIT II</b> Life As We Know Don't It ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ <b>EXHIBIT II</b> Life As We Know Don't It ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ home to beings- <b>EXHIBIT II</b> Life As We Know Don't It ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ that challenge our concept of life itself. Before we venture- too far into the unknown, we have to ask ourselves... What if alien life- is more like us... than we think? <b>EXHIBIT I</b> <b>EXHIBIT I</b> Life As We Know It <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ If there's one feature- <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ that unites us... <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ with these other specimes in this museum, <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ <b>EXHIBIT I</b> Life As We Know It ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ it's carbon... <i><b>Carbon</b></i> <i><b>Carbon</b></i> ⁴ S_<i><b> Carbon</b></i> ⁴ᵗʰ ᴀ_ Sᴜ_ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐ C_ ᴀᴛ_ Sᴜʙ_<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒ R_ C_ ᴀᴛᴏ_ Sᴜʙʟ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢ R +_ C_ ᴀᴛᴏᴍ Sᴜʙʟɪ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ R + 7:_ C ᴀᴛᴏᴍɪ Sᴜʙʟɪᴍ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃ R + 7: 9 C ᴀᴛᴏᴍɪᴄ Sᴜʙʟɪᴍᴀ_<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇ R + 7: 9: C 0 ᴀᴛᴏᴍɪᴄ ᴡ_ Sᴜʙʟɪᴍᴀᴛ_<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘ R + 7: 9: 5 C 0_ ᴀᴛᴏᴍɪᴄ ᴡᴇ_ Sᴜʙʟɪᴍᴀᴛɪ_<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿ R + 7: 9: 56_ C 0_ ᴀᴛᴏᴍɪᴄ ᴡᴇɪ_ Sᴜʙʟɪᴍᴀᴛɪᴏ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈ R + 7: 9: 56._ C 0_ ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ Sᴜʙʟɪᴍᴀᴛɪᴏɴ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃ R + 7: 9: 56.2_ C 0 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿ R + 7: 9: 56.25: C 00 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏ_<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ R + 7: 9: 56.25: C 00 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪ_<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉ R + 7: 9: 56.25: C 00_ ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴ_ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡ R + 7: 9: 56.25: C 00_ ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂. Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉ R + 7: 9: 56.25: C 00_ ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ:<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐ R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉ R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿ R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ<i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ Carbon is ubiquitous, R + 7: 9: 56.25: Period 2 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ it's one o' tho most- R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ it's one o' tho most- R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ common elements in the universe, R + 7: 9: 56.25: Group 14 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ common elements in the universe, R + 7: 9: 56.25: Group 14 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Group 14 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ and is very good at forming- R + 7: 9: 56.25: [He] 2s² 2p² ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ and is very good at forming- R + 7: 9: 56.25: [He] 2s² 2p² ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ large stable molecules. R + 7: 9: 56.25 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ large stable molecules. R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ large stable molecules. R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ Carbon has the rare ability- R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ to form four way bounds- R + 7: 9: 56.25: Group 14 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ to form four way bounds- R + 7: 9: 56.25: Group 14 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ with other elements... R + 7: 9: 56.25: [He] 2s² 2p² ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ with other elements... R + 7: 9: 56.25: [He] 2s² 2p² ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: [He] 2s² 2p² ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ and to bind to itself- R + 7: 9: 56.25 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ and to bind to itself- R + 7: 9: 56.25 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ in long stable chains... R + 7: 9: 56.25: C 006 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b> Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ in long stable chains... enabling the formation- of huge complex molecules. This versatility makes- carbon the center piece... in the moleculary machinery of life. And the same carbon compounds, that we use have been- found far from Earth, clinging to meteorites... <i><b>G</b></i> <i><b>Gl</b></i> <i><b>Gly</b></i>_ <i><b>Glyc</b></i>_ <i><b>Glyci</b></i>_ <i><b>Glycin</b></i> <i><b>Glycine</b></i> <i><b>Glycine</b></i> to floating in far off clouds... <i><b>Glycine</b></i> <i><b>Glycine</b></i> of cosmic dust. <i><b>Glycine</b></i> <i><b>Glycine</b></i> The building blocks of life... Drifting like snow... through the universe. And if alien life has selected other- carbon compounds for the biochemistry, they will have plenty to choose from. Z DNA | B DNA Scientists recently identified- over a million possible- alternatives to DNA... all carbon based. If we ever discover- other carbon based life forms, we will be fundamentally related. They will be our cosmic brother. But would they look anything like us? If they hail from Earth like planets, we could share even more in common, than just our biochemistry. What would life be like- on another planets, if it is evolved? Would it be like, the world today here on Earth? Or would be completely different? There are those, who argue that... from the argument of convergent evolution, if conditions on other planets- are similar to here, then we will see- very similar life forms... Animal and plant-like organisms, that look very familiar. On Earth, certain features like eyesight, echo-location and flight... have evolved multiple times, independently... in different species. This process of convergent evolution... could extend to alien planets like Earth, where creatures face similar- environmental pressures. It's no guarantee, but there could be certain- universalities of life... the greatest hits of evolution... on repeat across the universe. Each feature would be a tune- to its local environment. Dimly lit planets... would produce huge eyes- to suck in extra light, like nocturnal mammals. Some people have gone- so far as to say... that human type organism, humanoids, will occur on other planets. The existence of other- human-like organisms... seems unlikely, given the long... convoluted chain of events- that produced us. But we can't rule it out. If just one in every- 100 trillion Earth-like planets produced- a human-like form... There could still be- thousands of creatures- like us out there... <b>But in reality, we are more likely to find something lower on the food chain.</b> Convergent evolution- is also rampant in plant life... and C₄ photosynthesis- has arisen independently, over 40 times... Would alien plants- look like ours... or something else entirely? On Earth, plants appear green... because they absorb- the other wavelengths, in the Sun's light spectrum. But stars come in many colors... and alien plants would evolve- different pigments... to adapt to their sun's unique spectrum. Plants feeding off hotter stars- could appear redder, by absorbing their- energy rich bluer light Around dim Red Dwarfs stars, vegetation could appear black, adapted to absorb all- visible wavelengths of light. Earth itself- may have once appeared purple, due a pigment called retinal, ʀᴇᴛɪɴᴀʟ due a pigment called retinal, ʀᴇᴛɪɴᴀʟ ʀᴇᴛɪɴᴀʟ that was an early- ʀᴇᴛɪɴᴀʟ precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ Some think that retinal's- ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ molecular simplicity... molecular simplicity... could make it a more- universal pigment. If so, we may find- that purple... is life's- favorite color... But the color of alien vegetation... is more than just a curiosity, it's chemical information- that could be seen... from light years away. Earth plants leave a signature bump, in the light reflected off our planet. Finding a similar signal... from another world could point the way... to alien vegetation. Perhaps- this will be our... first glimpse at alien life, a vibrant hue... cast by a distant world. <b>But the biggest influence on life won't be its host star; it will be its home planet.</b> What happens, when you change the day-length... of a planet? What happens, when you change- the tilt of a planet? What happens, when you change- the shape of the orbit? What happens, when you change- the gravity of a planet? Planets with long, elliptical orbits... would see drastic seasons. There could be worlds... did that appear dead- for the thousands of years, then suddenly... spring to life. Most of the rocky planets... discovered so far- have been massive- "Super Earths". <b>G</b> <b>GJ</b> <b>GJ 3</b> <b>GJ 35</b> <b>GJ 357</b> <b>GJ 357 D</b> <b>GJ 357 D</b> ˢ <b>GJ 357 D</b> ˢᵘ <b>GJ 357 D</b> ˢᵘᵖ <b>GJ 357 D</b> ˢᵘᵖᵉ <b>GJ 357 D</b> ˢᵘᵖᵉʳ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖ *<i>GJ 357 D</i>a* ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³° <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ How would life evolve... <b>GJ 357 D</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 357</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 357</b> ˢᵘᵖᵉʳ ᵉᵃʳᵗ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 357</b> ˢᵘᵖᵉʳ ᵉᵃʳ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 35</b> ˢᵘᵖᵉʳ ᵉᵃ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 35</b> ˢᵘᵖᵉʳ ᵉ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 35</b> ˢᵘᵖᵉʳ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 3</b> ˢᵘᵖᵉ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 3</b> ˢᵘᵖ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ 3</b> ˢᵘ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰ ᵐᵃˢˢ: ~ ⁷× ᴱᵃ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ on these worlds? <b>GJ</b> ˢ ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍ ᵐᵃˢˢ: ~ ⁷ˣ ᴱ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³° on these worlds? <b>GJ</b> ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦ ᵐᵃˢˢ: ~ ⁷ˣ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³ on these worlds? <b>G</b> ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸ ᵐᵃˢˢ: ~ ⁷ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵ on these worlds? <b>G</b> ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᵐᵃˢˢ: ~ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻ on these worlds? <b>G</b> ᵈᶦˢᵗᵃⁿᶜᵉ: ~³ ᵐᵃˢˢ: ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ on these worlds? ᵈᶦˢᵗᵃⁿᶜᵉ: ~ ᵐᵃˢˢ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: on these worlds? ᵈᶦˢᵗᵃⁿᶜᵉ: ᵐᵃˢ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ on these worlds? ᵈᶦˢᵗᵃⁿᶜᵉ ᵐᵃ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ on these worlds? ᵈᶦˢᵗᵃⁿᶜ ᵐ ᵗᵉᵐᵖᵉʳᵃᵗᵘ on these worlds? ᵈᶦˢᵗᵃⁿ ᵗᵉᵐᵖᵉʳᵃᵗ on these worlds? ᵈᶦˢᵗᵃ ᵗᵉᵐᵖᵉʳᵃ on these worlds? ᵈᶦˢᵗ ᵗᵉᵐᵖᵉʳ on these worlds? ᵈᶦˢ ᵗᵉᵐᵖᵉ ᵈᶦ ᵗᵉᵐᵖ ᵈ ᵗᵉᵐ ᵗᵉ In the seas, gravity may not matter- much at all. A high-gravity planet... isn't high-gravity all over, If you're in the sea, and that's where all life starts... there's very nearly no gravity, 'cuz you're much the density- as the stuff around you. It's when the animals- come out on land, that they feel the gravity. High g-force... would necessitate- large bones and muscle mass, in complex life on land... They would also demand- a more robust circulatory system. And plant life could be stunted... by the energy cost of carrying nutrients- under stronger gravity. Low-gravity planets... would more easily- lose their atmospheres to space, and lack a magnetic field- to protect from cosmic rays. But smaller worlds- could be home to secret oases... Huge cave systems... that provide hide-outs for life. <b>With steadier temperatures and protection from cosmic rays, life could thrive underground on planets with deadly surfaces.</b> The smallest possible- habitable planets... are estimated at 2.5%- Earth's mass. If surface life does evolve on these worlds, it could be a sight to behold. Plant life could grow to towering heights, able to carry nutrients higher, at lesser gravity. And without the need... for bulky skeletons- and muscle mass, animals could have body types, that boggle the mind. <b>Despite our eager imaginations, large complex lifeforms are probably a cosmic rarity.</b> Here on Earth, it took three billion years- for evolution... to produce complex plant and animal life. Simple organisms are hardier, more adaptable... and more widespread. The largest collection- in the museum- of alien life... would likely be... the "Hall of Microbes". Yet finding even- the tiniest alien microbe... would be a profound discovery. And bite-sized life... could leave a big footprint. Like stromatolites on Earth, layers of microbes... could build up into- huge rock mounds over time. Leaving behind eery structures. And in big enough numbers, some alien bacteria... could leave a distinct biosignature, by exhaling gases- that wouldn't coexist naturally... Like oxygen... and methane. There's ways- to make oxygen without life. There's ways- to make- methane without life. But to have them- in the atmosphere together? Is almost impossible... unless you've got biology- making those gases- at the surface. And it would have, a imprint on the planet's- spectrum of colors. Next generation space telescopes- could find a signal like this, on a world not far from home. The closest Sun-like star- with an Earth-like exoplanet, in the habitable zone... is probably only- 20 light years away... and can be seen... with a naked eye. <b>But there may be an even easier target to aim for than tiny Earth-like planets.</b> <b>The brown dwarfs: too small to be stars, to big to be planets.</b> Most Brown Dwarfs... are too hot to support life- as we know it. But some are just cold enough. <b>W</b> <b>WI</b> <b>WIS</b> <b>WISE</b> <b>WISE 0</b> <b>WISE 08</b> <b>WISE 085</b> <b>WISE 0855</b> <b>WISE 0855-</b> <b>WISE 0855-0</b> <b>WISE 0855-07</b> <b>WISE 0855-071</b> <b>WISE 0855-0714</b> <b>WISE 0855-0714</b> ˢ <b>WISE 0855-0714</b> ˢᵘ <b>WISE 0855-0714</b> ˢᵘᵇ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³- <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-0714</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-071</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-07</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-0</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³` <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³ <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹ <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻ <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ <b>WISE 085</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ <b>WISE 08</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵ <b>WISE 08</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻ <b>WISE 08</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃ ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: <b>WISE 08</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉ ᵐᵃˢˢ: ³-¹⁰ˣ ʲ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ <b>WISE 08</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸ ᵐᵃˢˢ: ³-¹⁰ˣ ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ <b>WISE 0</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ᵐᵃˢˢ: ³-¹⁰ ᵗᵉᵐᵖᵉʳᵃᵗᵘ <b>WISE 0</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰ ᵐᵃˢˢ: ³-¹ ᵗᵉᵐᵖᵉʳᵃᵗ <b>WISE 0</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍ ᵐᵃˢˢ: ³- ᵗᵉᵐᵖᵉʳᵃ <b>WISE 0</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦ ᵐᵃˢˢ: ³ ᵗᵉᵐᵖᵉʳ <b>WISE 0</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡ ᵐᵃˢˢ: ᵗᵉᵐᵖᵉ <b>WISE 0</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈ ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ᵐᵃˢˢ ᵗᵉᵐᵖ <b>WISE</b> ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈᶦˢᵗᵃⁿᶜᵉ: ᵐᵃˢ ᵗᵉᵐ <b>WISE</b> ˢᵘᵇ⁻ᵇʳᵒʷ ᵈᶦˢᵗᵃⁿᶜᵉ ᵐᵃ ᵗᵉ <b>WIS</b> ˢᵘᵇ⁻ᵇʳᵒ ᵈᶦˢᵗᵃⁿᶜ ᵐ ᵗ <b>WIS</b> ˢᵘᵇ⁻ᵇʳ ᵈᶦˢᵗᵃⁿ ᵐ <b>WIS</b> ˢᵘᵇ⁻ᵇ ᵈᶦˢᵗᵃ <b>WIS</b> ˢᵘᵇ⁻ ᵈᶦˢᵗ <b>WIS</b> ˢᵘᵇ ᵈᶦˢ <b>WI</b> ˢᵘ ᵈᶦ <b>WI</b> ˢ ᵈ <b>WI</b> ˢ <b>WI</b> <b>W</b> All the prime elements for life... have been detected- inside their atmospheres. And within these clouds, some layers- would provide ideal temperatures- and pressures for habitability. There could be photosynthetic- plankton in these skies, kept aloft by churning upwinds. And within enough force, these upwinds could even support larger... more complex life. Predators... <b>There are over 25 billion brown dwarfs in our galaxy alone, and their sizes will make them easier targets for study.</b> <b>The first specimen we discover from the museum of life may not be from a planet at all.</b> This raises a crucial question... what if we've- been looking in... all the wrong places? What if nature... has other ideas? <b>EXHIBIT II</b> <b>EXHIBIT II</b> Life As We Know Don't It <b>EXHIBIT II</b> LIFE AS WE DON'T KNOW IT ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ Most of the Universe... is too cold or too hot- for liquid water, and the biochemistry- that supports life... as we know it. But in case our biases are misleading, we have to cast a wide net. To search for life- outside the habitable zone, in places that seem- wildly hostile to us. Exotic environments... will demand exotic biochemistries. And while no element- can match carbon's versatility, one contender is a front runner. <i><b>Silicon</b></i> <i><b>Silicon</b></i> M<i><b> Silicon</b></i> ᴰ M<i><b> Silicon</b></i> ᴰ Mᴇ<i><b> Silicon</b></i> ᴰ Mᴇʟ_<i><b> Silicon</b></i> ᴰ Mᴇʟᴛ_<i><b> Silicon</b></i> ᴰᵉ Mᴇʟᴛɪ_<i><b> Silicon</b></i> ᴰᵉ Mᴇʟᴛɪɴ_<i><b> Silicon</b></i> ᴰᵉⁿ Mᴇʟᴛɪɴ_<i><b> Silicon</b></i> ᴰᵉⁿ Mᴇʟᴛɪɴ<i><b> Silicon</b></i> ᴰᵉⁿ R_ ᴀ_ Mᴇʟᴛɪɴɢ_<i><b> Silicon</b></i> ᴰᵉⁿˢ R_ ᴀ_ Mᴇʟᴛɪɴɢ_<i><b> Silicon</b></i> ᴰᵉⁿˢ R_ ᴀᴛ_ Mᴇʟᴛɪɴɢ ᴘ_<i><b> Silicon</b></i> ᴰᵉⁿˢ R_ ᴀᴛ_ Mᴇʟᴛɪɴɢ ᴘᴏ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦ R ᴀᴛ Mᴇʟᴛɪɴɢᴘᴏ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦ R ᴀᴛᴏ Mᴇʟᴛɪɴɢ ᴘᴏɪ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗ R_ ᴀᴛᴏ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗ R_ ᴀᴛᴏ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗ R +_ ᴀᴛᴏᴍ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R + ᴀᴛᴏᴍ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R + ᴀᴛᴏᴍɪ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R + ᴀᴛᴏᴍɪ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R +_ ᴀᴛᴏᴍɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R +_ ᴀᴛᴏᴍɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R +_ ᴀᴛᴏᴍɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R + ᴀᴛᴏᴍɪᴄ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R + ᴀᴛᴏᴍɪᴄ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R + ᴀᴛᴏᴍɪᴄ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7_ ᴀᴛᴏᴍɪᴄ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7_ ᴀᴛᴏᴍɪᴄ ᴡ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7_ ᴀᴛᴏᴍɪᴄ ᴡ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7: ᴀᴛᴏᴍɪᴄ ᴡ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙ R + 7: ᴀᴛᴏᴍɪᴄ ᴡᴇ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ <i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙ R + 7: ᴀᴛᴏᴍɪᴄ ᴡᴇ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ <i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙ R + 7:_ ᴀᴛᴏᴍɪᴄ ᴡᴇ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ B_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³ R + 7:_ ᴀᴛᴏᴍɪᴄ ᴡᴇ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ B_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³ R + 7:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³² R + 7: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ R + 7: 9:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ R + 7: 9:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ:_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪ_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ R + 7: 9: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ R + 7: 9: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ R + 7: 9: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ:_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 2_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9:_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 2_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:_<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9: 5 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 2 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ R + 7: 9: 56 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28._ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56._ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28._ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56._ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.0_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.2 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.0 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.2 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.08 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25 Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.08 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25_ Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Period 3 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Metalloid ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Metalloid ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ At first glance... R + 7: 9: 56.25: Metalloid ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ silicon seem similar to carbon. R + 7: 9: 56.25: 3.9936 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ silicon seem similar to carbon. R + 7: 9: 56.25: 3.9936 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ It forms the same four-way bonds R + 7: 9: 56.25: Period 3 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ It forms the same four-way bonds R + 7: 9: 56.25: Period 3 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ and is also abundant in the Universe. R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ and is also abundant in the Universe. R + 7: 9: 56.25: P-block ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Metalloid ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: 3.9936 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: 3.9936 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ But a closer look... R + 7: 9: 56.25: 3.9936 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ reveals that these- R + 7: 9: 56.25: ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ reveals that these- R + 7: 9: 56.25: ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ two elements are false twins... R + 7: 9: 56.25: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ two elements are false twins... R + 7: 9: 56.25: Si 014 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Period 3 ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b> Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ Silicon bonds are weaker, and less prone to forming- large complex molecules. Despite this, they can withstand a wider range- of temperatures, opening up intriguing possibilities. Life based on the silicon atom instead of carbon, would be more resistant to the extreme cold. Providing a whole new range of weird forms. But silicon has a problem: in the presence of oxygen, it binds into solid rock. To avoid turning to stone, silicon beings might be confined to oxygen free environments. Like Saturn's frigid moon, Titan. <b>TITAN</b><i> Saturnian Moon Distance: 1,2 Million KM Mass: .023X Earth Temperature: -129ºC</i> Its vast lakes of liquid methane and ethane could be an ideal medium for silicon-based life, or other radical biochemistries. Without ample sunlight, beings on worlds like Titan, would likely be chemosynthetic. Deriving their energy by breaking down rocks. Such life forms could have ultra slow metabolisms and life cycles measured in millions of years. <b>And frozen worlds aren't the only possible harbor for exotic life.</b> <b>CoRoT-7B</b> <b>CoRoT-7B</b><i> Super Earth</i> <b>CoRoT-7B</b><i> Super Earth Distance: ~520 Light Years</i> <b>CoRoT-7B</b><i> Super Earth Distance: ~520 Light Years Mass: -8x Earth</i> <b>CoRoT-7B</b><i> Super Earth Distance: ~520 Light Years Mass: -8x Earth Temperature: 1026-1526ºC</i> In high temperatures, typically rigid silicon oxygen bonds become more flexible and reactive. Triggering more dynamic chemistry. This has led to a truly bizarre proposal: silicon-based life forms that live inside molten silicate rock. In theory, these forms could even exist deep beneath the Earth inside magma chambers as part of a shadow biosphere. If so, then the aliens are right under our noses. Other shadow biospheres have been proposed: forms of life living alongside us that we don't even know are here. Including tiny RNA-based life, small enough to go undetected by existing instruments. Clouds of dust and empty space might seem like the last place you'd expect to find anything living. But when cosmic dust makes contact with plasma, a type of ionized gas, something strange happens. In simulated conditions, dust particles, have been seen spontaneously self-organizing into helical structures that resemble DNA. These plasma crystals even begin to exhibit life-like behavior: replicating, evolving into more stable forms and passing on information. <b>Could these crystals be considered alive?</b> <b>To some researchers, they meet all the criteria to qualify as inorganic life forms.</b> <b>So far, we have only ever seen them in computer simulations.</b> <b>But some speculate we could find them among the ice particles in the rings of Uranus.</b> Plasma is the most common state of matter in the Universe. If complex evolving plasma crystals really exist and if they can be considered life, they could be its most common form. <b>Or perhaps life is lurking in the polar opposite environment:</b> <b>inside the hearts of dead stars.</b> When massive suns explode, some collapase into ultra dense cores called neutron stars. <b>PSR B1509-58</b><i> Neutron Star Distante: 17,000 Light Years Spin Rate: ~7/second</i> Hulking masses of atomic nuclei crammed together like sardines. Conditions on the surface are mind-boggling: gravity is a hundred billion times stronger than Earth's. But beneath their iron nuclei crust lies something strange: a hot dense sea of neutrons and subatomic particles. Stripped of their electron shells, these nuclei would obey entirely different laws of chemistry, based not on the electromagnetic force, but the strong nuclear force, which binds nuclei together. In theory, these particles could link-up to form larger macronuclei, which could then combine into even bigger super nuclei. If so, then this bewildering environment would mimic the basic conditions for life. Heavy nucleon molecules floating in a complex particle ocean. Some scientists have proposed the unimaginable: exotic life forms drifting through the strange particle sea, living, evolving and dying on incomprehensibly fast time scales. <b>There's probably no chance of ever detecting such a strange breed of life.</b> <b>But there may be hope for finding an even more exotic form.</b> Life is not something that has to evolve naturally. It can be designed. And once intelligence is introduced into the evolutionary process, a Pandora's Box is opened. Free from typical biological limitations, synthetic and machine - based life could be the most successful of all. It could thrive almost anywhere, including the vaccum of space, opening up vast frontiers unavailable to biological organisms. And compared to the glacial pace of natural selection, technical evolution allows exponentially faster growth, adaptability and resilience. By some estimates, autonomous, self - replicating machines could colonize an entire galaxy in as little as a million years. We can't predict how hyper - intelligent life would organise itself, but in theory, there could be convergent evolution at play. The electrical properties of Silicon might make it a universal basis for machine intelligence, a redemption for its biological shortcomings. <b>With all its potential advantages,</b> <b>With all its potential advantages, machine life may even be a universal endpoint:</b> <b>With all its potential advantages, machine life may even be a universal endpoint: the apex of evolutionary process.</b> As the universe ages, perhaps machine intelligence would come to dominate, and naturally occurring biological life will be viewed as a quaint starting point. Perhaps, we ourselves will lead this transition, and the great human experiment would be merely a first link in a sprawling intergalactic chain of life. <b>In the end, we are still the only beings we know of in the museum of alien life.</b> <b>To truly know ourselves, we will have to know:</b> <b>To truly know ourselves, we will have to know: are we the only ones?</b> Loren Eisley has said, that one does not meet oneself until one catches the reflection from an eye other than human. One day that eye may be that of an intelligent alien. And the sooner we eschew our narrow view of evolution, the sooner we can truly explore our ultimate origins and destinations. <b>We have seen what could be out there.</b> <b>And we know how we might find it.</b> <b>There is only one thing left to do.</b> <b>Go looking.</b> <b>HANDCRAFTED BY MELODYSHEEP</b>
Info
Channel: melodysheep
Views: 3,320,610
Rating: 4.9358358 out of 5
Keywords: life, beyond, chapter, ii, museum, alien, humanity, cosmos, universe, melody sheep, John, Boswell, melodysheep
Id: ThDYazipjSI
Channel Id: undefined
Length: 38min 0sec (2280 seconds)
Published: Wed Oct 07 2020
Related Videos
Note
Please note that this website is currently a work in progress! Lots of interesting data and statistics to come.