Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ<b>
Protocol Labs</b> Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ<b>
Protocol Labs</b>
Follow your curiosity. Sᴜᴘᴘᴏʀᴛᴇᴅ ʙʏ<b>
Protocol Labs</b>
Follow your curiosity.
Lead humanity forward. <b>Protocol Labs</b>
Follow your curiosity.
Lead humanity forward. Follow your curiosity.
Lead humanity forward. <b>In all the universe,</b> <b>In all the universe,
there stands only one known tree of life.</b> <b>Does it stand alone?</b> <b>Does it stand alone?
Or is it part of a vast cosmic wilderness?</b> <b>Imagine a museum
containing every type of life in the universe.</b> <b>What strange things would such a museum hold?</b> <b>What is possible under the laws of nature?</b> LIFE LIFE BEYOND <b>CHAPTER II</b> <b>CHAPTER II</b><i>
The Museum Of Alien Life</i> To have any hope- of finding alien life, we have to know what to look for. But where do we begin? How do we narrow down... a seemingly infinite set- of possibilities? There's one thing we know for sure... nature will have to play- by her own rules. No matter how strange- alien life might be... is going to be limited- by the same physical, and chemical laws that we are... 6_ 6 C_ 6 CO_ 6 CO₂ 6 CO₂ + 6 CO₂ + 6 6 CO₂ + 6 H_ 6 CO₂ + 6 H₂_ 6 CO₂ + 6 H₂O_ 6 CO₂ + 6 H₂O + 6 CO₂ + 6 H₂O + L 6 CO₂ + 6 H₂O + Li 6 CO₂ + 6 H₂O + Lig_ 6 CO₂ + 6 H₂O + Ligh_ 6 CO₂ + 6 H₂O + Light_ 6 CO₂ + 6 H₂O + Light → 6 CO₂ + 6 H₂O + Light → C 6 CO₂ + 6 H₂O + Light → C₆ 6 CO₂ + 6 H₂O + Light → C₆H_ 6 CO₂ + 6 H₂O + Light → C₆H₁_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 O_ 6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 O₂ On top of this,
6 CO₂ + 6 H₂O + Light → C₆H₁₂O₆ + 6 O₂ On top of this, each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i>
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ →_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅O_
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +
each alien environment- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2 ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2C_
will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO_
will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ +_
will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + E
will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + En
will further limit- ⁴⁵⁸ <i>ʜʏᴅʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Ene
will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Ener_
will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energ_
will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy_
will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy
will further limit- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy
what kinds of life forms- ⁴⁵⁸ <i>ᴏxʏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy
can evolve there. ⁴⁵⁸ <i>ɴɪʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy
can evolve there. ⁴⁰⁵⁰ <i>ɴɪʀᴏɢᴇɴ</i> | C₆H₁₂O₆ → 2C₂H₅OH +2CO₂ + Energy
can evolve there. Despite these natural boundaries, the possibilities are staggering to imagine. Trillions of planets... each a unique cauldron of chemicals, undergoing their own complex evolution. To guide our thinking, this museum of alien life- will be divided into two exhibits... Life as we know it, <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ
Life as we know it, <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ
home to beings- <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ
with bio-chemistries like ours. <b>EXHIBIT II</b>
Life As We Know Don't It
ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ <b>EXHIBIT II</b>
Life As We Know Don't It
ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ
And life as we don't know it, <b>EXHIBIT II</b>
Life As We Know Don't It
ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ <b>EXHIBIT II</b>
Life As We Know Don't It
ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ
home to beings- <b>EXHIBIT II</b>
Life As We Know Don't It
ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ
that challenge our concept of life itself. Before we venture- too far into the unknown, we have to ask ourselves... What if alien life- is more like us... than we think? <b>EXHIBIT I</b> <b>EXHIBIT I</b>
Life As We Know It <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ
If there's one feature- <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ
that unites us... <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ
with these other specimes in this museum, <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ <b>EXHIBIT I</b>
Life As We Know It
ᶜᵃʳᵇᵒⁿ ᵃⁿᵈ ʷᵃᵗᵉʳ ᵇᵃˢᵉᵈ
it's carbon... <i><b>Carbon</b></i> <i><b>Carbon</b></i> ⁴ S_<i><b>
Carbon</b></i> ⁴ᵗʰ ᴀ_ Sᴜ_ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐ C_
ᴀᴛ_ Sᴜʙ_<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒ R_ C_
ᴀᴛᴏ_ Sᴜʙʟ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢ R +_ C_
ᴀᴛᴏᴍ Sᴜʙʟɪ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ R + 7:_ C
ᴀᴛᴏᴍɪ Sᴜʙʟɪᴍ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃ R + 7: 9 C
ᴀᴛᴏᴍɪᴄ Sᴜʙʟɪᴍᴀ_<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇ R + 7: 9: C 0
ᴀᴛᴏᴍɪᴄ ᴡ_ Sᴜʙʟɪᴍᴀᴛ_<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘ R + 7: 9: 5 C 0_
ᴀᴛᴏᴍɪᴄ ᴡᴇ_ Sᴜʙʟɪᴍᴀᴛɪ_<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿ R + 7: 9: 56_ C 0_
ᴀᴛᴏᴍɪᴄ ᴡᴇɪ_ Sᴜʙʟɪᴍᴀᴛɪᴏ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈ R + 7: 9: 56._ C 0_
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ Sᴜʙʟɪᴍᴀᴛɪᴏɴ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃ R + 7: 9: 56.2_ C 0
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿ R + 7: 9: 56.25: C 00
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏ_<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ R + 7: 9: 56.25: C 00
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪ_<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉ R + 7: 9: 56.25: C 00_
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴ_ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡ R + 7: 9: 56.25: C 00_
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂. Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉ R + 7: 9: 56.25: C 00_
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ:<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐ R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉ R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿ R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ<i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
Carbon is ubiquitous, R + 7: 9: 56.25: Period 2
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
it's one o' tho most- R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
it's one o' tho most- R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
common elements in the universe, R + 7: 9: 56.25: Group 14
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
common elements in the universe, R + 7: 9: 56.25: Group 14
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Group 14
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
and is very good at forming- R + 7: 9: 56.25: [He] 2s² 2p²
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
and is very good at forming- R + 7: 9: 56.25: [He] 2s² 2p²
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
large stable molecules. R + 7: 9: 56.25
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
large stable molecules. R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
large stable molecules. R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: Period 2
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
Carbon has the rare ability- R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
to form four way bounds- R + 7: 9: 56.25: Group 14
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
to form four way bounds- R + 7: 9: 56.25: Group 14
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
with other elements... R + 7: 9: 56.25: [He] 2s² 2p²
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
with other elements... R + 7: 9: 56.25: [He] 2s² 2p²
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ R + 7: 9: 56.25: [He] 2s² 2p²
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
and to bind to itself- R + 7: 9: 56.25
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
and to bind to itself- R + 7: 9: 56.25
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
in long stable chains... R + 7: 9: 56.25: C 006
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: ₁₂.₀₁₁ Sᴜʙʟɪᴍᴀᴛɪᴏɴ ᴘᴏɪɴᴛ: ³⁹¹⁵ ᴷ <i><b>
Carbon</b></i> ⁴ᵗʰ ᵐᵒˢᵗ ᵃᵇᵘⁿᵈᵃⁿᵗ ᵉˡᵉᵐᵉⁿᵗ
in long stable chains... enabling the formation- of huge complex molecules. This versatility makes- carbon the center piece... in the moleculary machinery of life. And the same carbon compounds, that we use have been- found far from Earth, clinging to meteorites... <i><b>G</b></i> <i><b>Gl</b></i> <i><b>Gly</b></i>_ <i><b>Glyc</b></i>_ <i><b>Glyci</b></i>_ <i><b>Glycin</b></i> <i><b>Glycine</b></i> <i><b>Glycine</b></i>
to floating in far off clouds... <i><b>Glycine</b></i> <i><b>Glycine</b></i>
of cosmic dust. <i><b>Glycine</b></i> <i><b>Glycine</b></i>
The building blocks of life... Drifting like snow... through the universe. And if alien life has selected other- carbon compounds for the biochemistry, they will have plenty to choose from. Z DNA | B DNA Scientists recently identified- over a million possible- alternatives to DNA... all carbon based. If we ever discover- other carbon based life forms, we will be fundamentally related. They will be our cosmic brother. But would they look anything like us? If they hail from Earth like planets, we could share even more in common, than just our biochemistry. What would life be like- on another planets, if it is evolved? Would it be like, the world today here on Earth? Or would be completely different? There are those, who argue that... from the argument of convergent evolution, if conditions on other planets- are similar to here, then we will see- very similar life forms... Animal and plant-like organisms, that look very familiar. On Earth, certain features like eyesight, echo-location and flight... have evolved multiple times, independently... in different species. This process of convergent evolution... could extend to alien planets like Earth, where creatures face similar- environmental pressures. It's no guarantee, but there could be certain- universalities of life... the greatest hits of evolution... on repeat across the universe. Each feature would be a tune- to its local environment. Dimly lit planets... would produce huge eyes- to suck in extra light, like nocturnal mammals. Some people have gone- so far as to say... that human type organism, humanoids, will occur on other planets. The existence of other- human-like organisms... seems unlikely, given the long... convoluted chain of events- that produced us. But we can't rule it out. If just one in every- 100 trillion Earth-like planets produced- a human-like form... There could still be- thousands of creatures- like us out there... <b>But in reality, we are more likely to find
something lower on the food chain.</b> Convergent evolution- is also rampant in plant life... and C₄ photosynthesis- has arisen independently, over 40 times... Would alien plants- look like ours... or something else entirely? On Earth, plants appear green... because they absorb- the other wavelengths, in the Sun's light spectrum. But stars come in many colors... and alien plants would evolve- different pigments... to adapt to their sun's unique spectrum. Plants feeding off hotter stars- could appear redder, by absorbing their- energy rich bluer light Around dim Red Dwarfs stars, vegetation could appear black, adapted to absorb all- visible wavelengths of light. Earth itself- may have once appeared purple, due a pigment called retinal, ʀᴇᴛɪɴᴀʟ
due a pigment called retinal, ʀᴇᴛɪɴᴀʟ ʀᴇᴛɪɴᴀʟ
that was an early- ʀᴇᴛɪɴᴀʟ
precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ
precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ
precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ
precursor to chlorophyll. ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ
Some think that retinal's- ʀᴇᴛɪɴᴀʟ | ᴄʜʟᴏʀᴏᴘʜʏʟʟ ᴅ ʀᴇᴛɪɴᴀʟ ᵖʰᵒᵗᵒˢʸⁿᵗʰᵉᵗⁱᶜ ᵖⁱᵍᵐᵉⁿᵗ
molecular simplicity... molecular simplicity... could make it a more- universal pigment. If so, we may find- that purple... is life's- favorite color... But the color of alien vegetation... is more than just a curiosity, it's chemical information- that could be seen... from light years away. Earth plants leave a signature bump, in the light reflected off our planet. Finding a similar signal... from another world could point the way... to alien vegetation. Perhaps- this will be our... first glimpse at alien life, a vibrant hue... cast by a distant world. <b>But the biggest influence on life won't be its host star;
it will be its home planet.</b> What happens, when you change the day-length... of a planet? What happens, when you change- the tilt of a planet? What happens, when you change- the shape of the orbit? What happens, when you change- the gravity of a planet? Planets with long, elliptical orbits... would see drastic seasons. There could be worlds... did that appear dead- for the thousands of years, then suddenly... spring to life. Most of the rocky planets... discovered so far- have been massive- "Super Earths". <b>G</b> <b>GJ</b> <b>GJ 3</b> <b>GJ 35</b> <b>GJ 357</b> <b>GJ 357 D</b> <b>GJ 357 D</b>
ˢ <b>GJ 357 D</b>
ˢᵘ <b>GJ 357 D</b>
ˢᵘᵖ <b>GJ 357 D</b>
ˢᵘᵖᵉ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖ *<i>GJ 357 D</i>a*
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³° <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
How would life evolve... <b>GJ 357 D</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 357</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗʰ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 357</b>
ˢᵘᵖᵉʳ ᵉᵃʳᵗ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 357</b>
ˢᵘᵖᵉʳ ᵉᵃʳ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 35</b>
ˢᵘᵖᵉʳ ᵉᵃ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃʳ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 35</b>
ˢᵘᵖᵉʳ ᵉ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉᵃ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 35</b>
ˢᵘᵖᵉʳ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸᵉ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗʰ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 3</b>
ˢᵘᵖᵉ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ ʸ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳᵗ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 3</b>
ˢᵘᵖ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰᵗ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱᵃʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ 3</b>
ˢᵘ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍʰ
ᵐᵃˢˢ: ~ ⁷× ᴱᵃ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°ᶜ
on these worlds? <b>GJ</b>
ˢ
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦᵍ
ᵐᵃˢˢ: ~ ⁷ˣ ᴱ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³°
on these worlds? <b>GJ</b>
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸᶦ
ᵐᵃˢˢ: ~ ⁷ˣ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵³
on these worlds? <b>G</b>
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹ ᴸ
ᵐᵃˢˢ: ~ ⁷
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻⁵
on these worlds? <b>G</b>
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³¹
ᵐᵃˢˢ: ~
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~ ⁻
on these worlds? <b>G</b>
ᵈᶦˢᵗᵃⁿᶜᵉ: ~³
ᵐᵃˢˢ:
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ~
on these worlds? ᵈᶦˢᵗᵃⁿᶜᵉ: ~
ᵐᵃˢˢ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ:
on these worlds? ᵈᶦˢᵗᵃⁿᶜᵉ:
ᵐᵃˢ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ
on these worlds? ᵈᶦˢᵗᵃⁿᶜᵉ
ᵐᵃ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ
on these worlds? ᵈᶦˢᵗᵃⁿᶜ
ᵐ
ᵗᵉᵐᵖᵉʳᵃᵗᵘ
on these worlds? ᵈᶦˢᵗᵃⁿ
ᵗᵉᵐᵖᵉʳᵃᵗ
on these worlds? ᵈᶦˢᵗᵃ
ᵗᵉᵐᵖᵉʳᵃ
on these worlds? ᵈᶦˢᵗ
ᵗᵉᵐᵖᵉʳ
on these worlds? ᵈᶦˢ
ᵗᵉᵐᵖᵉ ᵈᶦ
ᵗᵉᵐᵖ ᵈ
ᵗᵉᵐ ᵗᵉ ᵗ In the seas, gravity may not matter- much at all. A high-gravity planet... isn't high-gravity all over, If you're in the sea, and that's where all life starts... there's very nearly no gravity, 'cuz you're much the density- as the stuff around you. It's when the animals- come out on land, that they feel the gravity. High g-force... would necessitate- large bones and muscle mass, in complex life on land... They would also demand- a more robust circulatory system. And plant life could be stunted... by the energy cost of carrying nutrients- under stronger gravity. Low-gravity planets... would more easily- lose their atmospheres to space, and lack a magnetic field- to protect from cosmic rays. But smaller worlds- could be home to secret oases... Huge cave systems... that provide hide-outs for life. <b>With steadier temperatures and protection from cosmic rays,
life could thrive underground on planets with deadly surfaces.</b> The smallest possible- habitable planets... are estimated at 2.5%- Earth's mass. If surface life does evolve on these worlds, it could be a sight to behold. Plant life could grow to towering heights, able to carry nutrients higher, at lesser gravity. And without the need... for bulky skeletons- and muscle mass, animals could have body types, that boggle the mind. <b>Despite our eager imaginations, large complex lifeforms
are probably a cosmic rarity.</b> Here on Earth, it took three billion years- for evolution... to produce complex plant and animal life. Simple organisms are hardier, more adaptable... and more widespread. The largest collection- in the museum- of alien life... would likely be... the "Hall of Microbes". Yet finding even- the tiniest alien microbe... would be a profound discovery. And bite-sized life... could leave a big footprint. Like stromatolites on Earth, layers of microbes... could build up into- huge rock mounds over time. Leaving behind eery structures. And in big enough numbers, some alien bacteria... could leave a distinct biosignature, by exhaling gases- that wouldn't coexist naturally... Like oxygen... and methane. There's ways- to make oxygen without life. There's ways- to make- methane without life. But to have them- in the atmosphere together? Is almost impossible... unless you've got biology- making those gases- at the surface. And it would have, a imprint on the planet's- spectrum of colors. Next generation space telescopes- could find a signal like this, on a world not far from home. The closest Sun-like star- with an Earth-like exoplanet, in the habitable zone... is probably only- 20 light years away... and can be seen... with a naked eye. <b>But there may be an even easier target to aim for
than tiny Earth-like planets.</b> <b>The brown dwarfs: too small to be stars, to big to be planets.</b> Most Brown Dwarfs... are too hot to support life- as we know it. But some are just cold enough. <b>W</b> <b>WI</b> <b>WIS</b> <b>WISE</b> <b>WISE 0</b> <b>WISE 08</b> <b>WISE 085</b> <b>WISE 0855</b> <b>WISE 0855-</b> <b>WISE 0855-0</b> <b>WISE 0855-07</b> <b>WISE 0855-071</b> <b>WISE 0855-0714</b> <b>WISE 0855-0714</b>
ˢ <b>WISE 0855-0714</b>
ˢᵘ <b>WISE 0855-0714</b>
ˢᵘᵇ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³- <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-0714</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-071</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-07</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-0</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855-</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 0855</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³`ᶜ <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³` <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹³ <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻¹ <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ ⁻ <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉʳ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗᵉ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ ⁻ <b>WISE 085</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦᵗ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵⁰ <b>WISE 08</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳˢ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖᶦ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻⁵ <b>WISE 08</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃʳ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘᵖ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: ⁻ <b>WISE 08</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉᵃ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲᵘ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ: <b>WISE 08</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸᵉ
ᵐᵃˢˢ: ³-¹⁰ˣ ʲ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳᵉ <b>WISE 08</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ ʸ
ᵐᵃˢˢ: ³-¹⁰ˣ
ᵗᵉᵐᵖᵉʳᵃᵗᵘʳ <b>WISE 0</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰᵗ
ᵐᵃˢˢ: ³-¹⁰
ᵗᵉᵐᵖᵉʳᵃᵗᵘ <b>WISE 0</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳᶠ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍʰ
ᵐᵃˢˢ: ³-¹
ᵗᵉᵐᵖᵉʳᵃᵗ <b>WISE 0</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃʳ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦᵍ
ᵐᵃˢˢ: ³-
ᵗᵉᵐᵖᵉʳᵃ <b>WISE 0</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷᵃ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡᶦ
ᵐᵃˢˢ: ³
ᵗᵉᵐᵖᵉʳ <b>WISE 0</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈʷ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷ ˡ
ᵐᵃˢˢ:
ᵗᵉᵐᵖᵉ <b>WISE 0</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ ᵈ
ᵈᶦˢᵗᵃⁿᶜᵉ: ⁷
ᵐᵃˢˢ
ᵗᵉᵐᵖ <b>WISE</b>
ˢᵘᵇ⁻ᵇʳᵒʷⁿ
ᵈᶦˢᵗᵃⁿᶜᵉ:
ᵐᵃˢ
ᵗᵉᵐ <b>WISE</b>
ˢᵘᵇ⁻ᵇʳᵒʷ
ᵈᶦˢᵗᵃⁿᶜᵉ
ᵐᵃ
ᵗᵉ <b>WIS</b>
ˢᵘᵇ⁻ᵇʳᵒ
ᵈᶦˢᵗᵃⁿᶜ
ᵐ
ᵗ <b>WIS</b>
ˢᵘᵇ⁻ᵇʳ
ᵈᶦˢᵗᵃⁿ
ᵐ <b>WIS</b>
ˢᵘᵇ⁻ᵇ
ᵈᶦˢᵗᵃ <b>WIS</b>
ˢᵘᵇ⁻
ᵈᶦˢᵗ <b>WIS</b>
ˢᵘᵇ
ᵈᶦˢ <b>WI</b>
ˢᵘ
ᵈᶦ <b>WI</b>
ˢ
ᵈ <b>WI</b>
ˢ <b>WI</b> <b>W</b> All the prime elements for life... have been detected- inside their atmospheres. And within these clouds, some layers- would provide ideal temperatures- and pressures for habitability. There could be photosynthetic- plankton in these skies, kept aloft by churning upwinds. And within enough force, these upwinds could even support larger... more complex life. Predators... <b>There are over 25 billion brown dwarfs in our galaxy alone,
and their sizes will make them easier targets for study.</b> <b>The first specimen we discover from the museum of life
may not be from a planet at all.</b> This raises a crucial question... what if we've- been looking in... all the wrong places? What if nature... has other ideas? <b>EXHIBIT II</b> <b>EXHIBIT II</b>
Life As We Know Don't It <b>EXHIBIT II</b>
LIFE AS WE DON'T KNOW IT
ᴱˣᵒᵗᶦᶜ ᴮᶦᵒᶜʰᵉᵐᶦˢᵗʳᶦᵉˢ Most of the Universe... is too cold or too hot- for liquid water, and the biochemistry- that supports life... as we know it. But in case our biases are misleading, we have to cast a wide net. To search for life- outside the habitable zone, in places that seem- wildly hostile to us. Exotic environments... will demand exotic biochemistries. And while no element- can match carbon's versatility, one contender is a front runner. <i><b>Silicon</b></i> <i><b>Silicon</b></i> M<i><b>
Silicon</b></i> ᴰ M<i><b>
Silicon</b></i> ᴰ Mᴇ<i><b>
Silicon</b></i> ᴰ Mᴇʟ_<i><b>
Silicon</b></i> ᴰ Mᴇʟᴛ_<i><b>
Silicon</b></i> ᴰᵉ Mᴇʟᴛɪ_<i><b>
Silicon</b></i> ᴰᵉ Mᴇʟᴛɪɴ_<i><b>
Silicon</b></i> ᴰᵉⁿ Mᴇʟᴛɪɴ_<i><b>
Silicon</b></i> ᴰᵉⁿ Mᴇʟᴛɪɴ<i><b>
Silicon</b></i> ᴰᵉⁿ R_
ᴀ_ Mᴇʟᴛɪɴɢ_<i><b>
Silicon</b></i> ᴰᵉⁿˢ R_
ᴀ_ Mᴇʟᴛɪɴɢ_<i><b>
Silicon</b></i> ᴰᵉⁿˢ R_
ᴀᴛ_ Mᴇʟᴛɪɴɢ ᴘ_<i><b>
Silicon</b></i> ᴰᵉⁿˢ R_
ᴀᴛ_ Mᴇʟᴛɪɴɢ ᴘᴏ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦ R
ᴀᴛ Mᴇʟᴛɪɴɢᴘᴏ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦ R
ᴀᴛᴏ Mᴇʟᴛɪɴɢ ᴘᴏɪ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗ R_
ᴀᴛᴏ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗ R_
ᴀᴛᴏ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗ R +_
ᴀᴛᴏᴍ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R +
ᴀᴛᴏᴍ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R +
ᴀᴛᴏᴍɪ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R +
ᴀᴛᴏᴍɪ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ:<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R +_
ᴀᴛᴏᴍɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ R +_
ᴀᴛᴏᴍɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R +_
ᴀᴛᴏᴍɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R +
ᴀᴛᴏᴍɪᴄ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R +
ᴀᴛᴏᴍɪᴄ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ R +
ᴀᴛᴏᴍɪᴄ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7_
ᴀᴛᴏᴍɪᴄ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7_
ᴀᴛᴏᴍɪᴄ ᴡ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7_
ᴀᴛᴏᴍɪᴄ ᴡ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ² R + 7:
ᴀᴛᴏᴍɪᴄ ᴡ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙ R + 7:
ᴀᴛᴏᴍɪᴄ ᴡᴇ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ <i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙ R + 7:
ᴀᴛᴏᴍɪᴄ ᴡᴇ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ <i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙ R + 7:_
ᴀᴛᴏᴍɪᴄ ᴡᴇ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ B_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³ R + 7:_
ᴀᴛᴏᴍɪᴄ ᴡᴇ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ B_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³ R + 7:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³² R + 7: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹ R + 7:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ R + 7: 9:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ R + 7: 9:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ R + 7: 9:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ:_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪ_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ R + 7: 9: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ R + 7: 9: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ R + 7: 9: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ:_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 2_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9:_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 2_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ:_<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜ R + 7: 9: 5 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 2 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ R + 7: 9: 56 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28._ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56._ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28._ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56._ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.0_ Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.2 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.0 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.2 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.08 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25 Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.08 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25_ Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ ∕ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Period 3
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Metalloid
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Metalloid
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
At first glance... R + 7: 9: 56.25: Metalloid
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
silicon seem similar to carbon. R + 7: 9: 56.25: 3.9936
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
silicon seem similar to carbon. R + 7: 9: 56.25: 3.9936
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25:
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
It forms the same four-way bonds R + 7: 9: 56.25: Period 3
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
It forms the same four-way bonds R + 7: 9: 56.25: Period 3
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
and is also abundant in the Universe. R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
and is also abundant in the Universe. R + 7: 9: 56.25: P-block
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Metalloid
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: 3.9936
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: 3.9936
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
But a closer look... R + 7: 9: 56.25: 3.9936
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
reveals that these- R + 7: 9: 56.25:
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
reveals that these- R + 7: 9: 56.25:
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
two elements are false twins... R + 7: 9: 56.25: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³
two elements are false twins... R + 7: 9: 56.25: Si 014
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ R + 7: 9: 56.25: Period 3
ᴀᴛᴏᴍɪᴄ ᴡᴇɪɢʜᴛ: 28.086 Mᴇʟᴛɪɴɢ ᴘᴏɪɴᴛ: ¹⁶⁸⁷ ᴷ Bᴏɪʟɪɴɢ ᴘᴏɪɴᴛ: ³⁵³⁸ ᴷ<i><b>
Silicon</b></i> ᴰᵉⁿˢᶦᵗʸ᠄ ²˙³²⁹⁰ ᵍ∕ᶜᵐ³ Silicon bonds are weaker, and less prone to forming- large complex molecules. Despite this, they can withstand a wider range- of temperatures, opening up intriguing possibilities. Life based on the silicon atom
instead of carbon, would be more resistant to
the extreme cold. Providing a whole new range of weird forms. But silicon has a problem: in the presence of oxygen,
it binds into solid rock. To avoid turning to stone, silicon beings might be confined to oxygen free environments. Like Saturn's frigid moon, Titan. <b>TITAN</b><i>
Saturnian Moon
Distance: 1,2 Million KM
Mass: .023X Earth
Temperature: -129ºC</i> Its vast lakes of liquid methane and
ethane could be an ideal medium for silicon-based life, or other radical biochemistries. Without ample sunlight, beings on worlds like Titan, would likely be chemosynthetic. Deriving their energy by
breaking down rocks. Such life forms could have ultra slow metabolisms and life cycles
measured in millions of years. <b>And frozen worlds aren't the only possible
harbor for exotic life.</b> <b>CoRoT-7B</b> <b>CoRoT-7B</b><i>
Super Earth</i> <b>CoRoT-7B</b><i>
Super Earth
Distance: ~520 Light Years</i> <b>CoRoT-7B</b><i>
Super Earth
Distance: ~520 Light Years
Mass: -8x Earth</i> <b>CoRoT-7B</b><i>
Super Earth
Distance: ~520 Light Years
Mass: -8x Earth
Temperature: 1026-1526ºC</i> In high temperatures, typically rigid
silicon oxygen bonds become more flexible and reactive. Triggering more dynamic chemistry. This has led to a truly bizarre proposal: silicon-based life forms that live
inside molten silicate rock. In theory, these forms could even exist deep beneath the Earth inside
magma chambers as part of a shadow biosphere. If so, then the aliens are right
under our noses. Other shadow biospheres have
been proposed: forms of life living alongside us
that we don't even know are here. Including tiny RNA-based life, small enough to go undetected by
existing instruments. Clouds of dust and empty space might
seem like the last place you'd expect to find anything living. But when cosmic dust makes
contact with plasma, a type of ionized gas, something strange happens. In simulated conditions, dust particles, have been seen spontaneously
self-organizing into helical structures that resemble DNA. These plasma crystals even begin
to exhibit life-like behavior: replicating, evolving into more stable
forms and passing on information. <b>Could these crystals be considered alive?</b> <b>To some researchers, they meet all the criteria
to qualify as inorganic life forms.</b> <b>So far, we have only ever seen them in computer simulations.</b> <b>But some speculate we could find them
among the ice particles in the rings of Uranus.</b> Plasma is the most common state
of matter in the Universe. If complex evolving plasma
crystals really exist and if they can be considered life, they could be its most common form. <b>Or perhaps life is lurking in the
polar opposite environment:</b> <b>inside the hearts of dead stars.</b> When massive suns explode, some collapase into ultra dense cores called neutron stars. <b>PSR B1509-58</b><i>
Neutron Star
Distante: 17,000 Light Years
Spin Rate: ~7/second</i> Hulking masses of atomic nuclei
crammed together like sardines. Conditions on the surface are mind-boggling: gravity is a hundred billion times
stronger than Earth's. But beneath their iron nuclei
crust lies something strange: a hot dense sea of neutrons
and subatomic particles. Stripped of their electron shells, these nuclei would obey entirely
different laws of chemistry, based not on the electromagnetic force, but the strong nuclear force, which binds nuclei together. In theory, these particles could link-up to form larger macronuclei,
which could then combine into even bigger super nuclei. If so, then this bewildering environment would mimic the basic conditions for life. Heavy nucleon molecules floating
in a complex particle ocean. Some scientists have proposed
the unimaginable: exotic life forms drifting through
the strange particle sea, living, evolving and dying on
incomprehensibly fast time scales. <b>There's probably no chance of ever detecting
such a strange breed of life.</b> <b>But there may be hope for finding
an even more exotic form.</b> Life is not something that has to evolve naturally. It can be designed. And once intelligence is introduced into the evolutionary process, a Pandora's Box is opened. Free from typical biological limitations, synthetic and machine - based life could be the most successful of all. It could thrive almost anywhere, including the vaccum of space, opening up vast frontiers unavailable to biological organisms. And compared to the glacial pace of natural selection, technical evolution allows exponentially faster growth, adaptability and resilience. By some estimates, autonomous, self - replicating machines could colonize an entire galaxy in as little as a million years. We can't predict how hyper - intelligent life would organise itself, but in theory, there could be convergent evolution at play. The electrical properties of Silicon might make it a universal basis for machine intelligence, a redemption for its biological shortcomings. <b>With all its potential advantages,</b> <b>With all its potential advantages, machine life may even be a universal endpoint:</b> <b>With all its potential advantages, machine life may even be a universal endpoint: the apex of evolutionary process.</b> As the universe ages, perhaps machine intelligence would come to dominate, and naturally occurring biological life will be viewed as a quaint starting point. Perhaps, we ourselves will lead this transition, and the great human experiment would be merely a first link in a sprawling intergalactic chain of life. <b>In the end, we are still the only beings we know of in the museum of alien life.</b> <b>To truly know ourselves, we will have to know:</b> <b>To truly know ourselves, we will have to know: are we the only ones?</b> Loren Eisley has said, that one does not meet oneself until one catches the reflection from an eye other than human. One day that eye may be that of an intelligent alien. And the sooner we eschew our narrow view of evolution, the sooner we can truly explore our ultimate origins and destinations. <b>We have seen what could be out there.</b> <b>And we know how we might find it.</b> <b>There is only one thing left to do.</b> <b>Go looking.</b> <b>HANDCRAFTED BY MELODYSHEEP</b>
I can only explain this video as an EDM remix of a Carl Sagan Documentary. It's a good watch and has some good visuals...but the part about plasma crystals....bruh I need to inspect the source code.
This made me so sad that we are not out there now discovering new worlds.
I thought this was a game at first.
I'm 20 minutes in and I'm absolutely blown. The visuals and narration are so good ~
Sweeeet
When they got to artifical life, I got pretty excited since this is a taking point i have with friends all the time.
Underated chanel
Borg spotted!
Interesting, but I tired real fast of faux-Sagan narration and space documentary clichés like "cosmic dust floating on the atom clouds of the universe".