Visualizing 4D Geometry - A Journey Into the 4th Dimension [Part 2]

Video Statistics and Information

Video
Captions Word Cloud
Captions
this is not<font color="#E5E5E5"> flatland this is actually</font> <font color="#E5E5E5">our world and right here is our home</font> <font color="#CCCCCC">earth but why does it look</font><font color="#E5E5E5"> so flat</font> before<font color="#CCCCCC"> the flat earthers out there start</font> getting excited<font color="#CCCCCC"> I'm certainly</font><font color="#E5E5E5"> not saying</font> the<font color="#CCCCCC"> earth is flat what I've done</font><font color="#E5E5E5"> here is</font> I've taken<font color="#E5E5E5"> our 3d coordinate system and</font> <font color="#E5E5E5">I've squashed it to make room</font><font color="#CCCCCC"> for a</font> fourth dimension<font color="#CCCCCC"> aw</font><font color="#E5E5E5"> axis so every</font> <font color="#CCCCCC">horizontal flat plane that we see in</font> <font color="#E5E5E5">this representation of boarded space is</font> <font color="#E5E5E5">actually a</font><font color="#CCCCCC"> three-dimensional hyper</font><font color="#E5E5E5"> plane</font> and our Flat Earth is actually not so flat if we look at it in<font color="#E5E5E5"> 3d space but</font> where<font color="#CCCCCC"> exactly is this well this</font><font color="#E5E5E5"> is our</font> <font color="#E5E5E5">reality</font><font color="#CCCCCC"> and as three-dimensional</font> creatures<font color="#E5E5E5"> our W coordinate is zero just</font> <font color="#CCCCCC">like the</font><font color="#E5E5E5"> Z coordinate of a flatlander is</font> <font color="#E5E5E5">zero so everything that we see interact</font> <font color="#E5E5E5">with in our world exists on this</font><font color="#CCCCCC"> W</font> equals zero<font color="#CCCCCC"> hyperplane and so we will</font> never be<font color="#E5E5E5"> able to physically see what a</font> <font color="#E5E5E5">four-dimensional object looks like</font> because<font color="#CCCCCC"> all we will</font><font color="#E5E5E5"> be able to see is a</font> <font color="#E5E5E5">3-dimensional cross-section or</font><font color="#CCCCCC"> a slice</font> of<font color="#CCCCCC"> a 4d object as it passes</font><font color="#E5E5E5"> through</font><font color="#CCCCCC"> this</font> <font color="#E5E5E5">hyper plane this is actually the same</font> problem<font color="#CCCCCC"> that</font><font color="#E5E5E5"> the Flatlanders had they</font> can never physically see what a <font color="#E5E5E5">three-dimensional object looks like only</font> <font color="#CCCCCC">a slice as it passes through</font><font color="#E5E5E5"> their</font> <font color="#CCCCCC">two-dimensional plane</font><font color="#E5E5E5"> but don't get</font> <font color="#CCCCCC">discouraged because by studying these</font> <font color="#E5E5E5">slices it's possible to build an</font> <font color="#CCCCCC">understanding of what 4d geometry looks</font> like in a way that can supersede the need for<font color="#CCCCCC"> direct visualization</font><font color="#E5E5E5"> so first</font> let's<font color="#CCCCCC"> begin by</font><font color="#E5E5E5"> looking at 4d objects</font> from a more mathematical point of<font color="#E5E5E5"> view</font> <font color="#CCCCCC">consider the formulation of a circle</font><font color="#E5E5E5"> we</font> can construct a circle algebraically <font color="#E5E5E5">using the Pythagorean theorem</font><font color="#CCCCCC"> and of</font> course we can<font color="#CCCCCC"> change its location</font><font color="#E5E5E5"> and</font> size by changing its<font color="#CCCCCC"> centre coordinates</font> and radius<font color="#CCCCCC"> values but that's only</font><font color="#E5E5E5"> in two</font> dimensions<font color="#E5E5E5"> in three dimensions we</font><font color="#CCCCCC"> have</font> an additional<font color="#CCCCCC"> z axis</font><font color="#E5E5E5"> to consider and we</font> account<font color="#E5E5E5"> for this</font><font color="#CCCCCC"> by using the</font> Pythagorean theorem<font color="#E5E5E5"> in three dimensions</font> <font color="#E5E5E5">which results in an additional</font><font color="#CCCCCC"> Z squared</font> term in our equation and<font color="#CCCCCC"> four dimensions it's really not</font><font color="#E5E5E5"> much</font> different<font color="#E5E5E5"> by adding a</font><font color="#CCCCCC"> w squared term to</font> <font color="#CCCCCC">our equation we</font><font color="#E5E5E5"> could transform our</font> sphere into a<font color="#E5E5E5"> four-dimensional hyper</font> sphere and<font color="#CCCCCC"> we can use this</font><font color="#E5E5E5"> equation to</font> <font color="#CCCCCC">determine what a three-d slice would</font> look like if this hyper sphere were to pass through our<font color="#E5E5E5"> world since everything</font> that we see is on the<font color="#E5E5E5"> W equals zero</font> hyperplane<font color="#E5E5E5"> let's substitute</font><font color="#CCCCCC"> W equals</font> zero into<font color="#CCCCCC"> our equation simplifying gives</font> <font color="#CCCCCC">us</font><font color="#E5E5E5"> this form which we recognize as the</font> <font color="#E5E5E5">equation for a</font><font color="#CCCCCC"> sphere so math tells us</font> that<font color="#CCCCCC"> 3d slices of a hyper</font><font color="#E5E5E5"> sphere are</font> spheres<font color="#CCCCCC"> and the size of these spherical</font> slices depend on the<font color="#E5E5E5"> hyper planes W not</font> coordinate and for T space so back to the representation<font color="#CCCCCC"> of</font><font color="#E5E5E5"> for T space we can</font> draw<font color="#CCCCCC"> our four dimensional hyper sphere</font> like<font color="#E5E5E5"> this</font><font color="#CCCCCC"> and as it descends</font><font color="#E5E5E5"> down the W</font> axis<font color="#E5E5E5"> eventually it intersects the</font><font color="#CCCCCC"> W</font> equals zero<font color="#CCCCCC"> hyper plane</font><font color="#E5E5E5"> where it enters</font> our reality<font color="#E5E5E5"> allowing</font><font color="#CCCCCC"> us to see a</font> <font color="#CCCCCC">three-dimensional</font><font color="#E5E5E5"> slice</font> by<font color="#E5E5E5"> watching the hypersphere</font><font color="#CCCCCC"> passed</font> through<font color="#E5E5E5"> our world we can visualize this</font> geometry<font color="#E5E5E5"> by watching how these 3d slices</font> change when a<font color="#CCCCCC"> three-dimensional sphere</font> intersects flatland<font color="#CCCCCC"> it creates a growing</font> and shrinking circle caused by the roundness<font color="#CCCCCC"> of the sphere in the third</font> dimension<font color="#E5E5E5"> Flatlanders can compile these</font> <font color="#E5E5E5">slices in their mind</font><font color="#CCCCCC"> and visualize its</font> three-dimensional roundness<font color="#CCCCCC"> by</font><font color="#E5E5E5"> observing</font> the rate of<font color="#CCCCCC"> change of the radius</font> <font color="#E5E5E5">similarly as the hyper sphere moves into</font> and<font color="#E5E5E5"> out of our world</font><font color="#CCCCCC"> it shows up as</font> spheres<font color="#CCCCCC"> that grow and shrink</font><font color="#E5E5E5"> according</font> <font color="#E5E5E5">to the curvature in the fourth dimension</font> <font color="#CCCCCC">so right now by watching</font><font color="#E5E5E5"> the morphing</font> that's going on<font color="#E5E5E5"> we are actually in our</font> limited perception seeing <font color="#CCCCCC">four-dimensional roundness</font><font color="#E5E5E5"> okay so what</font> would<font color="#E5E5E5"> a hyper</font><font color="#CCCCCC"> color look like if it</font><font color="#E5E5E5"> were</font> to<font color="#CCCCCC"> pass through our world again we can</font> <font color="#CCCCCC">start by analyzing its algebraic</font> formulation<font color="#E5E5E5"> by definition the boundary</font> <font color="#E5E5E5">of a 3d cone is formed from an extrusion</font> <font color="#E5E5E5">of a circular</font><font color="#CCCCCC"> base to a point in the Z</font> direction and and<font color="#E5E5E5"> for D the hyper cone</font> is an extrusion<font color="#E5E5E5"> from a spherical base to</font> a point in the W direction which is also why it's sometimes<font color="#E5E5E5"> referred</font><font color="#CCCCCC"> to as</font><font color="#E5E5E5"> the</font> spherical cone and of course we will only see<font color="#CCCCCC"> a slice given by the</font> intersection<font color="#E5E5E5"> with the W equals zero</font> hyperplane<font color="#CCCCCC"> and so our equation tells</font><font color="#E5E5E5"> us</font> <font color="#E5E5E5">that as long</font><font color="#CCCCCC"> as</font><font color="#E5E5E5"> the axis of the hyper</font> cone is aligned with<font color="#E5E5E5"> the W axis each</font> slice is<font color="#E5E5E5"> a sphere whose radius depends</font> on the W<font color="#E5E5E5"> coordinate of the hyper come so</font> intersecting our world would<font color="#E5E5E5"> look</font> something<font color="#E5E5E5"> like this</font> [Music] but what would<font color="#CCCCCC"> we see if</font><font color="#E5E5E5"> the hyper cone</font> rotated through four dimensional space <font color="#E5E5E5">like this well first let's consider</font><font color="#CCCCCC"> just</font> <font color="#CCCCCC">a single arbitrary orientation</font><font color="#E5E5E5"> obviously</font> this<font color="#E5E5E5"> won't be a sphere since the slice</font> is not aligned<font color="#E5E5E5"> with the</font><font color="#CCCCCC"> axis of the cone</font> <font color="#E5E5E5">but we can still figure</font><font color="#CCCCCC"> out what this 3d</font> slice looks like by reconstructing<font color="#CCCCCC"> it</font> piece by<font color="#CCCCCC"> piece let's go ahead and break</font> <font color="#CCCCCC">up the three</font><font color="#E5E5E5"> dimensional intersection</font> region into two dimensional pieces<font color="#E5E5E5"> now</font> remember our equation<font color="#CCCCCC"> tells us</font><font color="#E5E5E5"> that</font> <font color="#E5E5E5">slice is taken along the axis of the</font> hyper cone our spheres<font color="#E5E5E5"> and so each piece</font> is<font color="#CCCCCC"> actually a two-dimensional portion of</font> the<font color="#CCCCCC"> three dimensional spherical slice of</font> the<font color="#E5E5E5"> four dimensional hyper cone so the</font> object that we would see if the hyper cone intersected our world at this<font color="#E5E5E5"> angle</font> <font color="#E5E5E5">would be the region that is being swept</font> out<font color="#CCCCCC"> by the red slices</font> [Music] you which in this case is<font color="#CCCCCC"> something called a</font> paraboloid<font color="#CCCCCC"> a 3d</font><font color="#E5E5E5"> version of the parabola</font> [Music] this hyper cone can also make other fun shapes for<font color="#CCCCCC"> example consider this</font> <font color="#E5E5E5">orientation this 3d slice of the hyper</font> cone is an ellipsoid<font color="#CCCCCC"> a 3d version of the</font> ellipse or how about<font color="#E5E5E5"> the hyperboloid</font><font color="#CCCCCC"> a 3d</font> <font color="#E5E5E5">version of the hyperbola at this point</font> we<font color="#CCCCCC"> should start</font><font color="#E5E5E5"> seeing an interesting</font> pattern care<font color="#E5E5E5"> if we take</font><font color="#CCCCCC"> two-dimensional</font> slices of a normal<font color="#CCCCCC"> 3-dimensional cone we</font> get things called<font color="#CCCCCC"> conics</font><font color="#E5E5E5"> these include</font> circles ellipses parabolas and hyperbolas<font color="#CCCCCC"> depending on the angle that</font> <font color="#CCCCCC">the cone is sliced but</font><font color="#E5E5E5"> if we take</font><font color="#CCCCCC"> three</font> <font color="#E5E5E5">dimensional slices of a</font><font color="#CCCCCC"> four-dimensional</font> <font color="#E5E5E5">hyper</font><font color="#CCCCCC"> con we get the</font><font color="#E5E5E5"> 3d</font><font color="#CCCCCC"> analogs</font> <font color="#CCCCCC">to these 2d comics</font><font color="#E5E5E5"> the spheres</font> ellipsoids paraboloids<font color="#CCCCCC"> and hyperboloids</font> <font color="#CCCCCC">and the reason this happens is</font><font color="#E5E5E5"> because</font> <font color="#E5E5E5">of the hyper cone spherical symmetry</font> <font color="#CCCCCC">around the W axis so to get</font><font color="#E5E5E5"> back</font><font color="#CCCCCC"> to the</font> original<font color="#CCCCCC"> question</font><font color="#E5E5E5"> a hyper cone moving</font> and rotating through four dimensional space<font color="#CCCCCC"> we look like a smooth</font><font color="#E5E5E5"> morphing</font> between the different 3d conic sections <font color="#E5E5E5">and as long</font><font color="#CCCCCC"> as it intersects</font><font color="#E5E5E5"> at reality</font> <font color="#E5E5E5">we would see some pretty cool shapes</font> that would<font color="#E5E5E5"> certainly be unexplainable</font> with only<font color="#E5E5E5"> a</font><font color="#CCCCCC"> three dimensional worldview</font> [Music] [Music] now I want to show you a four-dimensional hypercube<font color="#CCCCCC"> if you're a</font> mathematician<font color="#E5E5E5"> you may know this by</font> another<font color="#E5E5E5"> name</font><font color="#CCCCCC"> the for cube or if you've</font> seen the movie interstellar you probably know it as the<font color="#E5E5E5"> tesseract</font> so to construct a tesseract<font color="#E5E5E5"> we can start</font> <font color="#E5E5E5">with a point and extrude it in the</font> <font color="#CCCCCC">x-direction to</font><font color="#E5E5E5"> create a line then we can</font> <font color="#CCCCCC">take</font><font color="#E5E5E5"> that line and</font><font color="#CCCCCC"> extrude it in the y</font> direction<font color="#CCCCCC"> to create square and then</font><font color="#E5E5E5"> we</font> can extrude<font color="#E5E5E5"> that square in the</font><font color="#CCCCCC"> z</font> direction<font color="#CCCCCC"> to make</font><font color="#E5E5E5"> a cube and finally we</font> extrude<font color="#CCCCCC"> that</font><font color="#E5E5E5"> cube perpendicular</font><font color="#CCCCCC"> to</font> itself in the<font color="#CCCCCC"> W direction to make the</font> tesseract<font color="#CCCCCC"> so</font><font color="#E5E5E5"> we're a square has one</font> dimensional line boundaries<font color="#E5E5E5"> and the cube</font> has two dimensional square boundaries a tesseract<font color="#E5E5E5"> has three dimensional cube</font> boundaries called cells<font color="#E5E5E5"> in fact</font><font color="#CCCCCC"> there</font> are<font color="#E5E5E5"> exactly</font><font color="#CCCCCC"> eight cells that make up its</font> boundary so in order<font color="#CCCCCC"> to determine what</font><font color="#E5E5E5"> a</font> <font color="#E5E5E5">3-dimensional slice of the hypercube</font> looks like we need<font color="#CCCCCC"> to</font><font color="#E5E5E5"> find the</font> <font color="#CCCCCC">intersection</font><font color="#E5E5E5"> of our hyperplane with each</font> of the<font color="#CCCCCC"> eight</font><font color="#E5E5E5"> cube cells that make</font><font color="#CCCCCC"> up the</font> tesseract boundary since an intersection of<font color="#E5E5E5"> a plane with a cube can only be a</font> triangle quadrilateral<font color="#E5E5E5"> Pentagon or a</font> hexagon we only need to<font color="#E5E5E5"> find the points</font> of<font color="#E5E5E5"> intersection of the W equals zero</font> hyperplane with the edges of a single cube cell<font color="#E5E5E5"> then we connect the dots</font><font color="#CCCCCC"> to</font> <font color="#CCCCCC">make a</font><font color="#E5E5E5"> polygon and repeat this for</font><font color="#CCCCCC"> all</font> eight cells and the polygons will come together<font color="#E5E5E5"> to form a closed boundary that</font> defines the<font color="#CCCCCC"> three-dimensional slice</font> so this is a<font color="#CCCCCC"> three-dimensional slice of</font> our tesseract<font color="#E5E5E5"> that is</font><font color="#CCCCCC"> halfway</font> <font color="#E5E5E5">intersecting our reality and we can</font> rotate it in any combination<font color="#E5E5E5"> of the X Y</font> X Z and Y Z planes as we can<font color="#CCCCCC"> any other</font> <font color="#CCCCCC">three-dimensional object but nothing</font> interesting happens<font color="#E5E5E5"> in fact you're</font> probably<font color="#CCCCCC"> thinking that I'm lying to you</font> that<font color="#E5E5E5"> this actually isn't a</font> <font color="#E5E5E5">four-dimensional object at all but the</font> reason<font color="#E5E5E5"> it looks so</font><font color="#CCCCCC"> normal is because we</font> are<font color="#CCCCCC"> only rotating</font><font color="#E5E5E5"> it in X Y Z space</font> <font color="#E5E5E5">meaning</font><font color="#CCCCCC"> that the W coordinates of</font><font color="#E5E5E5"> every</font> point and<font color="#E5E5E5"> the tesseract</font><font color="#CCCCCC"> are not changing</font> at all<font color="#E5E5E5"> it's kind of like a cube rotating</font> <font color="#CCCCCC">at</font><font color="#E5E5E5"> flatland when rotations are</font> restricted<font color="#CCCCCC"> to only</font><font color="#E5E5E5"> the</font><font color="#CCCCCC"> XY</font><font color="#E5E5E5"> flatland plane</font> the Z coordinates don't change so it will<font color="#CCCCCC"> always look</font><font color="#E5E5E5"> like a square and the</font> Flatliners would agree that<font color="#E5E5E5"> it looks</font> <font color="#E5E5E5">pretty normal</font> <font color="#E5E5E5">however in four dimensions there are not</font> three<font color="#E5E5E5"> planes of rotation but six planes</font> and the visuals get pretty interesting <font color="#CCCCCC">when we start rotating in the XW YW + ZW</font> planes<font color="#E5E5E5"> so this is not exactly</font><font color="#CCCCCC"> what we'd</font> expect<font color="#CCCCCC"> to see from</font><font color="#E5E5E5"> a</font><font color="#CCCCCC"> rotation</font><font color="#E5E5E5"> it's</font> almost as if<font color="#E5E5E5"> the hypercube is just</font> stretching and contracting<font color="#CCCCCC"> and magically</font> changing colors but let's<font color="#E5E5E5"> see what's</font> <font color="#CCCCCC">really going on behind the scenes in a</font> 2d<font color="#CCCCCC"> world if we looked at a cube rotating</font> <font color="#E5E5E5">an XE plane we would see the same</font> <font color="#E5E5E5">stretching and contracting and color</font> changes<font color="#E5E5E5"> but what's</font><font color="#CCCCCC"> really happening</font> <font color="#CCCCCC">isn't very magical it's actually quite</font> clear<font color="#E5E5E5"> the stretching and contracting is</font> due to the<font color="#E5E5E5"> fact that the diagonal is</font> longer than the side<font color="#CCCCCC"> length and the</font> color<font color="#E5E5E5"> changes are</font><font color="#CCCCCC"> just a result of edges</font> <font color="#E5E5E5">of the cube rotating through the plane</font> [Music] for the<font color="#E5E5E5"> tesseract it's really the same</font> <font color="#CCCCCC">thing</font><font color="#E5E5E5"> but one dimension higher</font> <font color="#E5E5E5">stretching and contracting is still from</font> the diagonal being longer<font color="#CCCCCC"> than the side</font> <font color="#CCCCCC">length</font><font color="#E5E5E5"> but the sudden color changes in</font> <font color="#CCCCCC">the</font><font color="#E5E5E5"> faces are a result of entire phases</font> of the tesseract<font color="#CCCCCC"> rotating through our</font> <font color="#CCCCCC">hyperplane things get even stranger when</font> we start rotating<font color="#E5E5E5"> around</font><font color="#CCCCCC"> to planes</font> [Music] [Music] again we can make sense<font color="#E5E5E5"> of what's</font> happening<font color="#CCCCCC"> by looking at the 2d case the</font> squared distorts and magically grows<font color="#E5E5E5"> two</font> additional sides but this<font color="#E5E5E5"> is really due</font> to<font color="#CCCCCC"> the</font><font color="#E5E5E5"> corners of</font><font color="#CCCCCC"> the cube rotating</font> through the plane [Music] and<font color="#E5E5E5"> 3d the additional faces that we see</font> <font color="#E5E5E5">our result of edges of our test</font><font color="#CCCCCC"> rack</font> rotating through our hyperplane there's also a<font color="#E5E5E5"> special subset of two plane</font> rotations called double rotations or <font color="#CCCCCC">Clifford displacements and these are</font> <font color="#E5E5E5">special</font><font color="#CCCCCC"> because</font><font color="#E5E5E5"> they represent rotations</font> around<font color="#E5E5E5"> two orthogonal planes which is</font> pretty<font color="#E5E5E5"> cool considering this is</font> <font color="#CCCCCC">impossible to do in only three</font> dimensions we can<font color="#E5E5E5"> also rotate our</font> tesseract<font color="#E5E5E5"> in any three planes at once</font> and again<font color="#E5E5E5"> we can see a 2d</font><font color="#CCCCCC"> analog of</font><font color="#E5E5E5"> the</font> three plane rotation to gain some <font color="#E5E5E5">insight into what we are seeing</font> [Music] you [Music] we can also<font color="#E5E5E5"> rotate around more</font><font color="#CCCCCC"> than</font> three<font color="#E5E5E5"> planets additionally we can learn</font> <font color="#E5E5E5">more about the</font><font color="#CCCCCC"> geometry of the tesseract</font> <font color="#CCCCCC">by orienting it in certain ways and</font> <font color="#E5E5E5">studying 3d slices as we move it along</font> the W axis into and out<font color="#E5E5E5"> of</font><font color="#CCCCCC"> our world we</font> will<font color="#E5E5E5"> be taking a look</font><font color="#CCCCCC"> at</font><font color="#E5E5E5"> the cases when</font> the tesseract<font color="#E5E5E5"> is oriented</font><font color="#CCCCCC"> so first</font><font color="#E5E5E5"> face</font> first<font color="#E5E5E5"> edge first and corner first</font><font color="#CCCCCC"> and to</font> help understand and<font color="#CCCCCC"> visualize what we</font> see<font color="#E5E5E5"> before each</font><font color="#CCCCCC"> of these</font><font color="#E5E5E5"> cases I am</font> <font color="#E5E5E5">going to show you the 2-dimensional</font> flatland<font color="#CCCCCC"> analog and what</font><font color="#E5E5E5"> we'll notice</font><font color="#CCCCCC"> is</font> that<font color="#E5E5E5"> since the tesseract</font><font color="#CCCCCC"> has four</font> perpendicular edges<font color="#E5E5E5"> coming out of each</font> corner<font color="#E5E5E5"> and the cube</font><font color="#CCCCCC"> only has</font><font color="#E5E5E5"> three the</font> 3d slices of the<font color="#E5E5E5"> tesseract will look</font> just<font color="#CCCCCC"> like the 2d slices of the cube</font> except just one<font color="#CCCCCC"> dimension higher</font><font color="#E5E5E5"> so here</font> we go [Music] [Music] [Music] [Music] [Music] [Music] [Music] you [Music] [Music] [Music] <font color="#E5E5E5">four dimensional geometry is actually</font> quite beautiful<font color="#E5E5E5"> partly due to its</font> <font color="#E5E5E5">apparent complexity but also because</font> it's filled<font color="#E5E5E5"> with mystery</font><font color="#CCCCCC"> and other</font> worldliness<font color="#E5E5E5"> because everything and</font> everyone<font color="#CCCCCC"> that we know lived right here</font> at<font color="#E5E5E5"> W equals zero our four dimensional</font> address and as far as<font color="#E5E5E5"> we know no</font><font color="#CCCCCC"> one can</font> ever leave<font color="#E5E5E5"> we are confined trapped even</font> to this<font color="#CCCCCC"> hyper plane we are the</font> Flatlanders of a<font color="#CCCCCC"> four dimensional world</font> <font color="#E5E5E5">and infinitely</font><font color="#CCCCCC"> thin insignificant slice</font> of<font color="#CCCCCC"> something</font><font color="#E5E5E5"> else</font><font color="#CCCCCC"> is higher dimensional</font> reality whether you find<font color="#E5E5E5"> that comforting</font> or chilling is up to you but it<font color="#E5E5E5"> opens</font> the door to<font color="#CCCCCC"> a very real question</font><font color="#E5E5E5"> what if</font> our experience<font color="#E5E5E5"> of the physical</font><font color="#CCCCCC"> world is</font> merely<font color="#E5E5E5"> a representation of something</font> extra<font color="#E5E5E5"> dimension and that our</font> understanding<font color="#CCCCCC"> of</font><font color="#E5E5E5"> reality is limited to a</font> <font color="#CCCCCC">three dimensional interpretation that</font><font color="#E5E5E5"> is</font> inconsistent<font color="#CCCCCC"> with actuality maybe</font> there's a whole new world<font color="#E5E5E5"> out there</font><font color="#CCCCCC"> that</font> <font color="#E5E5E5">we have yet to discover a world that</font> <font color="#E5E5E5">extends beyond into the fourth dimension</font> <font color="#CCCCCC">new space new things maybe even new life</font> <font color="#E5E5E5">but all of us here watching this video</font> are<font color="#CCCCCC"> the pioneers</font><font color="#E5E5E5"> of this new place the</font> modern-day explorers from the history <font color="#E5E5E5">books</font> continuing the age long search for <font color="#CCCCCC">answers to</font><font color="#E5E5E5"> the mysteries of the world</font> <font color="#CCCCCC">that we live in and the universe that's</font> surrounded [Music] until next time [Music] hey guys have you<font color="#E5E5E5"> made it all the way</font><font color="#CCCCCC"> to</font> the end<font color="#E5E5E5"> of this video be</font><font color="#CCCCCC"> sure to leave a</font> comment<font color="#E5E5E5"> and let me know what kind of</font> <font color="#CCCCCC">four-dimensional</font><font color="#E5E5E5"> stuff that you'd like</font> to<font color="#E5E5E5"> see it covered in future videos of</font> the series after<font color="#E5E5E5"> all this is a series</font> dedicated<font color="#E5E5E5"> to exploring the</font><font color="#CCCCCC"> fourth</font> dimension<font color="#CCCCCC"> and I know a lot of you guys</font> have some<font color="#CCCCCC"> really cool insights and ideas</font> <font color="#E5E5E5">to share so I'm</font><font color="#CCCCCC"> excited</font><font color="#E5E5E5"> to read those in</font> the comes down below<font color="#CCCCCC"> and anyway thanks</font> for<font color="#CCCCCC"> watching and I will see you</font><font color="#E5E5E5"> guys</font> next<font color="#CCCCCC"> time</font>
Info
Channel: The Lazy Engineer
Views: 283,144
Rating: 4.9534645 out of 5
Keywords: journey into the 4th dimension, fourth dimension, 4th dimension, what is the 4th dimension, hypersphere, hypercone, hypercube, tesseract, 3d slice of 4d, visualizing 4d, documentary, 4d toys, 4d game, 4th dimension explained, fourth dimension explained, the lazy engineer, 4d hypersphere, 4d hypercone, what does, look like, how to see in 4d, 4d hypercube, interstellar tesseract
Id: 4URVJ3D8e8k
Channel Id: undefined
Length: 20min 0sec (1200 seconds)
Published: Sat Aug 12 2017
Reddit Comments

Thanks OP, this was not only an incredibly clear explanation of the concept of 4 dimensional objects, but also relaxing as hell, needed something like this to end my day

👍︎︎ 6 👤︎︎ u/Ololondo 📅︎︎ Jan 07 2019 🗫︎ replies

I can't even visualize 2D geometry

👍︎︎ 3 👤︎︎ u/Powerspawn 📅︎︎ Jan 07 2019 🗫︎ replies

Is it possible that the expansion of the universe is actually a 4d universe passing through our 3D perception. If so, can we figure out the shape of that universe?

👍︎︎ 2 👤︎︎ u/RedEbw0307 📅︎︎ Jan 07 2019 🗫︎ replies

I’m just reading Death’s End by Cixin Liu (3rd of the Remembrance of Earth’s Past trilogy) and there’s a large section of Part 2 where Cixin Liu discusses the crew of a spaceship finding and interacting with the 4th Dimension. Some similarities in this video. A very cool read!

👍︎︎ 1 👤︎︎ u/Markuu6 📅︎︎ Jan 07 2019 🗫︎ replies

The thumbnail looks like a surreal meme

👍︎︎ 1 👤︎︎ u/CriticalThaumaturgy 📅︎︎ Jan 07 2019 🗫︎ replies
Related Videos
Note
Please note that this website is currently a work in progress! Lots of interesting data and statistics to come.