Weâve all heard the statements and stats
about the ominous timeline our planet is on. To avoid the worst effects of climate changeââfrom
natural disasters to mass extinctionââwe know that we need to reduce our greenhouse
gas emissions. And fast. And when we stop literally lighting things
on fire to power our world, we can build something that looks more like this. When you plug in,
youâre pulling from a resilient local network of abundant and affordable clean energy that
keeps the sky blue, the storms at bay and the birds, well⌠alive. So, how close are
we to a zero-emissions grid? Greenhouse gas emissions primarily come from
electricity, transportation, and industry. But in a zero-emissions future, this chart
actually looks more like this. Because in post-carbon world, almost everything relies
on the electrical grid. This means weâll need a way bigger grid
than we have today ââ maybe as much double the 4100 terawatt hours the U.S. currently
uses per year. Right now thatâs served up through a high-voltage power system that draws
primarily from centralized coal, nuclear, and natural gas plants. Three main grids then
deliver power by the minute to the eastern half, western half, and the Texas⌠half... of
the country, through local distribution networks. We use almost no oil in the power sector to
generate electricity, which is a good thing. In 2017, we were 28% cleaner than we were
back in 2005. Two thirds of our power still comes from coal and natural gas, so we have a lot of work to do. So what is that work, exactly? Well, electrical
engineers see the life cycle of energy in three main phases: generationââmaking
it, transmissionââmoving it, and distributionââmetering it out. And to build a zero-emissions grid,
each of these stages has to be clean and efficient. So letâs start with generation. If you look at how clean we are, nuclear makes
up about 20%, Hydro is around 7.5% or so, and then wind and solar together are getting close to around 8% and then very small amounts of geothermal and
some other renewable technologies. So, how can we bump those numbers up? The
fact is, most renewable sources are highly variable. And finding a way to store that
sunshine for a rainy day is challenge #1. Often storage seems as the Holy Grail to allow
us reaching a low-carbon society. Solar PV and wind turbines are intermittent energy
resources; if we need to have energy available all the time, they cannot supply it. Today, the most common and widely used technology
to store energy is pump storage, huge dams with large lakes at the top and when we need the energy we just open the dam and water
is running down and generating hydro-electricity. Compressed air is another viable solution
for underground storage, and then, of course, there are batteries, which are becoming cheaper
and more widely available by the day. With batteries, typically you just have a
few hours of storage. We're going to need longer periods of storage, not on the order
of hours but on the order of weeks. The problem is, pumped hydro storage, while
powerful, has already been developed in most of the places it can be. It has a huge ecological footprint and until materials scientists crack the immortal batteryââand donât worry, weâll let you knowââ
renewables are just too flaky to rely on entirely, without some additional help. Nuclear power has been a very reliable source
of zero emission power in the U.S. People like Bill Gates and some other groups are
helping to provide support for development of advanced and small-module reactors. These
are safer, cleaner, generate less waste than the generation of nuclear reactors that we
have right now. What we call carbon capture and storage that we install
on fossil fuels power plants âwhat it can do is capture the CO2 before it reaches the
air and you put it back to the ground. This technology is not yet mature, it's very expensive. But this is definitely one of the tools and one of the technologies that we would need to develop. Of course, if we could just crack nuclear fusion, that
would be another story. And maybe we will. But once weâve generated all the clean energy
we need, our next challenge is to transmit it. This is challenge #2, and as it turns
out, itâs one of the biggest. There are some areas that are just more geographically
endowed with good renewable resources. Places like Washington state create more hydropower than they actually use so they have a high
voltage direct current line from Oregon down to the suburbs of Los Angeles that delivers
that clean energy to Southern California. Unfortunately, large infrastructure projects
like this are a challenge to move forward, because letâs face it: no one wants a power
line running through their viewââand building them underground is a spendy endeavor. We need to bite the bullet. We're going to
probably need tens or hundreds of large power lines constructed for this power grid of the
future. And putting up with some black lines of sky
seems like a fair price to keep the whole sky blue. But, even the most efficient power lines still lose
some heat through transport. And that brings us to the final piece of the puzzle: distribution.
Once the power gets where itâs going, it has to get metered out to industrial, commercial,
and residential consumers. And weâre working hard to give many of these ancient systems
a digital facelift. By learning about peopleâs energy consumption habits, a so called âsmart
gridâ can actually adjust prices to keep up with supply and demand. Energy efficiency should be promoted first.
Any megawatt which is not consumed is a win-win here. There are millions of smart meters that have
been deployed throughout the US. They'd get a signal, maybe perhaps through their thermostat
or their smart device that would tell them that prices are high right now and that they
might want to hold off on doing the laundry or running the dishwasher during the peak
time of day. But what if that kind of communication went
both ways? Generating and storing power locally, like using rooftop solar panels or electric
car batteries, eliminates the need for transmission entirely. And this is a concept known as distributed
generation, or a âmicrogrid.â Instead of pulling a set amount of power from
a distant main source, microgrids allow custom power delivery from a suite of sources as
close as your own neighborhood, and this turns its participants into âprosumers,â because
they are both producing and consuming electricity. A device called a microgrid controller acts
like a dj, dropping live beats to match the energy of the crowd⌠or the energy consumption
of a neighborhood. And this allows prosumers to buy and sell cleaner electricity to and
from their own individual power systems, saving time, dollars, and carbon. A microgrid manager or controller knows what the weather forecast is for the day, it knows how much solar you're going to be able to produce, how much storage
is available and knows when to have the natural gas backup kick in. It knows what the power
prices might be and when it can be selling power into the grid or buying power for very
cheaply from the main grid. It can be optimized based
on producing the fewest amount of greenhouse gases. Some countries are getting close to a zero-emissions
grid. Iceland has so much hydropower that it sustains their entire nation. Tackling climate change and reducing emission
is a global challenge. So even if California and Germany and all Europe becomes zero carbon
it doesn't matter if the whole world won't unify and act together to achieve this goal
because a molecule of carbon does not care if it was emitted in China or in Israel, it
will impact the climate the same. And thatâs not even counting the billion
people in developing nations who are expected to become energy consumers in the next century. The truth is, energy is different everywhere. But what all
of us need is a healthy mix of renewable and zero-emission sources; next generation storage
solutions, more transmission lines and less need for transmission at allâânamely,
a smart distribution system that shows us exactly when and how all this energy is moving
around, helping us save megawatts and dollars. Experts agree that we must make big strides
before 2030, and reach complete carbon neutrality by 2050, to avoid the 1.5Âş threshold that
spells climate chaos. Currently we are headed to 3.2 degrees celsius warming. If we want 1.5 degrees celcius, we need to do five times more. We kids shouldnât have to do this. I wish the adults would take their responsibility but since no oneâs doing anything, we have to. So⌠how close are we to a zero-emissions
grid? We are not so close. Actually, we are not
close at all, but we definitely have means and tools to accelerate this transition. We're still emitting somewhere north of 50
gigatons of greenhouse gases every year. We need to stabilize that. We can get there but we need to do it faster,
we must be more ambitious, put more effort and think in the box, out of the box, underneath
the box and all the way that we can promote this really, really important goal of low
carbon society. Brains, exoplanets, dark matter, miracle cures, giant wooly mammoths?! Check out more How Close Are We? on this playlist. Smash that subscribe button and let us know what we should investigate next in the comments down below. Thanks for watching!
Spoiler not very close.. but it could be reached until 2050..
OECD electricity by source. World as a whole has just 6.8% coming from solar, biomass and wind.